A Chebyshev-like Semiiteration for Inconsistent Linear Systems
نویسندگان
چکیده
Semiiterative methods are known as a powerful tool for the iterative solution of nonsingular linear systems of equations. For singular but consistent linear systems with coefficient matrix of index one, one can still apply the methods designed for the nonsingular case. However, if the system is inconsistent, the approximations usually fail to converge. Nevertheless, it is still possible to modify classical methods like the Chebyshev semiiterative method in order to fulfill the additional convergence requirements caused by the inconsistency. These modifications may suffer from instabilities since they are based on the computation of the diverging Chebyshev iterates. In this paper we develop an alternative algorithm which allows to construct more stable approximations. This algorithm can be efficiently implemented with short recurrences. There are several reasons indicating that the new algorithm is the most natural generalization of the Chebyshev semiiteration to inconsistent linear systems.
منابع مشابه
Singular constrained linear systems
In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملCHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM
In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS). This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrate...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کامل